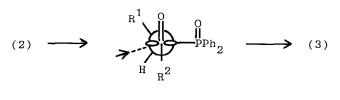

TRANS ALKENES BY STEREOSELECTIVE REDUCTION OF \propto -Ph₂PO KETONES: E-ISOSAFFROLE, E-ANETHOLE, AND PENICULIN

by Antony D. Buss, Ralph Mason, and Stuart Warren*


<u>Summary</u>. Conditions are described for the stereoselective reduction of α -Ph₂PO ketones and stereospecific elimination from the resulting <u>threo</u> Horner-Wittig intermediates to give pure E-alkenes such as the title compounds.

The Wittig reaction is normally <u>cis</u>-selective¹ but it can be made reasonably <u>trans</u>-selective by choice of conditions or by Schlosser's modification² in which <u>erythro</u> intermediates are equilibrated to <u>threo</u> by an extra mole of base. The products are nevertheless formed as mixtures of <u>E</u>- and <u>Z</u>-isomers and separation can be difficult. Hence <u>E</u>-anethole³ (5) can be made in 60% yield (80:20 <u>E:Z</u>) and E-isosaffrole⁴ (6) in 57% yield (87:13 E:2).⁵

Our modification of the Horner-Wittig reaction,⁶ using diphenylphosphinoyl (Ph₂PO) as the anion-stabilising group, avoids this difficulty by separation and purification of the crystalline <u>erythro</u> and <u>threo</u> intermediates which are synthesised by different stereoselective pathways. The route to <u>E</u>-alkenes involves acylation⁷ of phosphine oxides (1), stereoselective reduction of ketones (2) to <u>threo</u>-alcohols (3), and stereospecific elimination. We now describe the effect of substituents on the stereoselectivity of the reduction, the choice of reducing agents, and a possible explanation.

With $R^2=Ph$, alkyl substituents ranging from Me to n-Bu and i-Bu (entries 1-5, table 1) have no effect on the stereoselectivity of reduction of ketone (2). Even $R^2=i-Pr$ has little effect. With $R^1=Me$, changing the size of R^2 has a more marked effect, the larger substituents (entries 1,7-10) giving the higher selectivity. Cram's rule would explain the <u>threo</u> preference, but Felkin's model⁸ (4) with the largest group (Ph₂PO), and the bond with the lowest σ^* (C-P) sitting at right angles to the plane of the carbonyl group, explains both the <u>threo</u> selectivity and the effect of substituents. Changing R¹ can reduce stereoselectivity only if R¹ competes with Ph₂PO in size and low σ^* , but larger R² groups increase steroselectivity by making the contrast between R¹ and R² more emphatic.

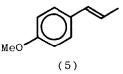

(4)

Table 1										
Stereos	elective	Reduction	of Ketones	(2)	with Sodium	Borohydrid	e in Ethanol			
Entr	y R ^l	R ²	Yield	Yield	d <u>threo</u> :	Yield				
			(2)	(3)	erythro	<u>E</u> -Alkene				
1	Me	Ph	83 ^a	89	89:11	81				
2	Et	Ph	65	88	89:11	80				
3	n-Pr	Ph	83	87	89:11	89				
4	n-Bu	Ph	81	81	89:11	94				
5	Me ₂ CHCH	2 Ph	75	77	89:11	85				
6	ме ₂ Сн	Ph	69	75	83:17	85				
7	ме	C6H11	84	87	91:9	-				
8	Me	p-MeOC ₆ H	, 79	89	90:10	81 <u>E</u>	anethole (5)			
9	Me	c	85	91	94:6	86 E-	isosaffrole (6)			
10	Me	d	61	74	90:10	71 fe	niculin (ll)			

a. Copper derivative and PhCOCl

- b. Cyclohexyl
- c. 3,4-Methylenedioxyphenyl
- d. p-Me₂C=CHCH₂OC₆H₄

These reductions were all carried out with sodium borohydride in ethanol since these simple reaction conditions combine high yield with high stereo-selectivity. Other reducing agents (table 2) gave lower yields or poor selectivity. The elimination step from <u>threo</u>-(3) to <u>E</u>-alkenes is totally stereospecific, unlike the corresponding <u>erythro</u> to <u>Z</u>-alkene conversion.⁶ Hence pure <u>E</u>-anethole (5) and <u>E</u>-isosaffrole (6) (entries 8 and 9, table 1) can be made in good yield without a trace of the Z isomers.

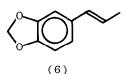
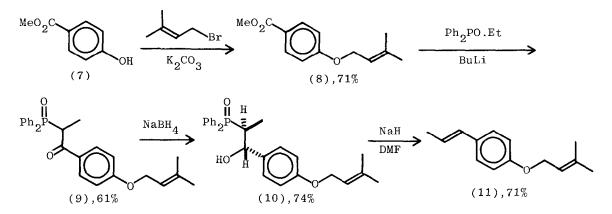
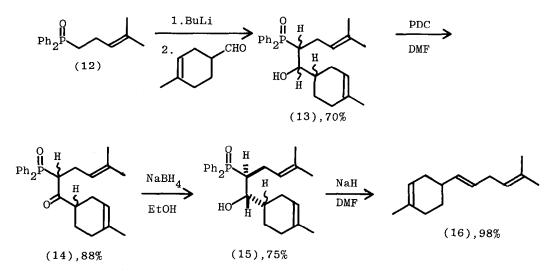



Table 2 Stereoselectivity in the Reduction of (2, R^1 =Me, R^2 =Ph)


Entry	Reagent	Conditions	Yield	<u>Threo</u> :	Recovered
			<u>Threo</u> -(3)	<u>Erythro</u>	Ketone (2)
1	NaBH ₄	EtOH, reflux	89	89:11	0
2	B ₂ H ₆	THF, 25 ^O C	71	73:27	0
3	LiÃlH ₄	THF, 0 ^O C	55 ^a	56:44	0
4	LiAlH(OBu-t)3	PhMe, reflux	(50) ^b	high	50
5	H ₂ /PtO ₂	МеОН, 25 ^О С	(50) ^b	high	50

a. Ph_2PO is reduced to Ph_2P but reoxidised by air during work-up. b. Not separated from <u>erythro</u> (3).

We have already used this route in a synthesis of \underline{E} -6-nonenol, a pheromone of the Mediterranean fruit fly,⁶ and \underline{E} - γ , δ -unsaturated ketals⁹ and now report a short synthesis of feniculin (11), a constituent of fennel and star anise,¹⁰ as a further illustration of the compatibility of the method with other functional groups. More surprisingly, pure \underline{E} -triene (16) was made from phosphine oxide¹¹ (12). Aldehyde addition to (12) gave a mixture of diastereoisomers (13) which was oxidised to ketone (14) and stereoselectively reduced to (15). Whether the third chiral centre in (15) is defined or not, flash chromatography gave a crystalline alcohol in 75% yield which gave only \underline{E} -(16) on elimination. The two vital chiral centres in (15) evidently have the three relationship.

We thank Glaxo Group Research and SERC for a grant (to A.D.B.) and Dr Barry Price for many helpful discussions.

References

- H.-J. Bestmann and O. Klein in Methoden der Organischen Chemie (Houben-Weyl), Thieme, Stuttgart, Vol 5/1b, 1972, p. 388.
- 2. M. Schlosser and M. Christmann, Angew. Chem., Int. Ed. Engl., 1966, 5, 126.
- 3. <u>E</u>-anethole is a flavouring compound which must contain less than 1% of the bitter toxic Z-isomer, R. J. de Pasquale, Synth. Commun., 1980, 10, 225.
- Isosaffrole is a (now banned) flavouring compound from sarsaparilla: the <u>E</u>isomer has been used as an intermediate in syntheses, G. Büchi and C.-P. Mak, <u>J. Amer. Chem. Soc.</u>, 1977, 99, 8073; G. Büchi and P.-S. Chu, <u>J. Org.</u> Chem., 1978, 43, 3717; C.-P. Mak and G. Büchi, Ibid., 1981, 46, 1.
- S. Cabiddu, A. Maccioni, and M. Secci, <u>Ann. Chim.</u> (Rome), 1962. 52, 1261, <u>Chem. Abstr.</u>, 1963, 59, 489g.
- A. D. Buss and S. Warren, <u>J. Chem. Soc., Chem. Commun.</u>, 1981, 100; Tetrahedron Lett., 1983, 24, 3931.
- R. S. Torr and S. Warren, <u>J. Chem. Soc. Pak.</u>, 1979, 1, 15; or by oxidation of the mixed alcohols formed in the normal Horner-Wittig reaction, A. D. Buss, W. B. Cruse, O. Kennard, and S. Warren, <u>J. Chem. Soc.</u>, <u>Perkin Trans.</u> 1, in the press.
- M. Cherest, H. Felkin, and N. Prudent, <u>Tetrahedron Lett.</u>, 1968, 2199;
 N. T. Anh and O. Eisenstein, <u>Nouv. J. Chim.</u>, 1977, 1, 61.
- 9. C. A. Cornish and S. Warren, Tetrahedron Lett., 1983, 24, 2603.
- H. M. Okely and M. F. Grundon, J. Chem. Soc., Perkin Trans. 1, 1981, 897.
 A. D. Buss and S. Warren, <u>Tetrahedron Lett.</u>, 1983, 24, 111.

(Received in UK 7 September 1983)